Primer on Inventory Management

Solutions

Continuous Review Model

Solution to Exercise 1:

i. Annual demand is 200 units.

Iteration 0:

$$
\begin{align*}
x_{0} & =\sqrt{\frac{2 \mu K}{h}}=\sqrt{\frac{2 \cdot 200 \cdot 50}{0.2 \cdot 10}}=100 \tag{67}\\
r_{0} & =F_{L T}^{-1}\left(1-\frac{x_{0} \cdot h}{\mu \cdot p}\right)=F_{L T}^{-1}\left(1-\frac{100 \cdot 2}{200 \cdot 25}\right)=F_{L T}^{-1}(0.96)=100+1.75 \cdot 25=144 \tag{68}
\end{align*}
$$

Iteration 1:

$$
\begin{align*}
x_{1} & =\sqrt{\frac{2 \mu}{h}\left(K+p \cdot L\left(\frac{r_{0}-\mu_{L T}}{\sigma_{L T}}\right) \sigma_{L T}\right)} \tag{69}\\
& =\sqrt{\frac{2 \cdot 200}{2}\left(50+25 \cdot L\left(\frac{144-100}{25}\right) \cdot 25\right)} \tag{70}\\
& =\sqrt{200(50+25 \cdot 0.0162 \cdot 25)} \tag{71}\\
& =110 \tag{72}\\
r_{1} & =F_{L T}^{-1}\left(1-\frac{x_{1} \cdot h}{\mu \cdot p}\right) \tag{73}\\
& =F_{L T}^{-1}\left(1-\frac{110 \cdot 2}{200 \cdot 25}\right) \tag{74}\\
& =F_{L T}^{-1}(0.956) \tag{75}\\
& =100+1.70 \cdot 25 \tag{76}\\
& =142.5 \tag{77}
\end{align*}
$$

Iteration 2:

$$
\begin{align*}
x_{1} & =\sqrt{\frac{2 \cdot 200}{2}\left(50+25 \cdot L\left(\frac{142.5-100}{25}\right) \cdot 25\right)} \tag{78}\\
& =\sqrt{200(50+25 \cdot 0.0183 \cdot 25)} \tag{79}\\
& =110.85 \tag{80}\\
r_{1} & =F_{L T}^{-1}\left(1-\frac{110.85 \cdot 2}{200 \cdot 25}\right) \tag{81}\\
& =F_{L T}^{-1}(0.95566) \tag{82}\\
& =100+1.7024 \cdot 25 \tag{83}\\
& =142.56 \tag{84}
\end{align*}
$$

Since $(142.56-142.5) / 142.5=0.042 \%<0.1 \%$ we stop with $x^{\star}=111$ and $r^{\star}=143$. Note, that we round, since we can only consider integral numbers of jars.
ii. In general, the expected cost are computed as

$$
\begin{equation*}
Z(x, r) \approx h \cdot\left(r-\mu_{L T}+\frac{x}{2}\right)+p \cdot \frac{\mu}{x} \cdot L\left(\frac{r-\mu_{L T}}{\sigma_{L T}}\right) \cdot \sigma_{L T}+K \cdot \frac{\mu}{x} \tag{85}
\end{equation*}
$$

For $x^{\star}=111$ and $r^{\star}=143$ we obtain

$$
\begin{align*}
Z(111,143) & \approx 2 \cdot\left(143-100+\frac{111}{2}\right)+25 \cdot \frac{200}{111} \cdot L\left(\frac{143-100}{25}\right) \cdot 25+50 \cdot \frac{200}{111} \tag{86}\\
& =307.70 \tag{87}
\end{align*}
$$

iii. We have already computed the EOQ and its corresponding re-order point in Iteration 0. The expected cost for $x^{0}=100$ and $r^{0}=144$ is

$$
\begin{align*}
Z(100,144) & \approx 2 \cdot\left(144-100+\frac{100}{2}\right)+25 \cdot \frac{200}{100} \cdot L\left(\frac{144-100}{25}\right) \cdot 25+50 \cdot \frac{200}{100} \tag{88}\\
& =188+19.75+100 \tag{89}\\
& =307.75 \tag{90}
\end{align*}
$$

The cost of this solution is already very close to the cost of the optimal solution.

Solution to Exercise 2:

i. The cost function assumes, that the average inventory level on-hand is equal to $r-\mu_{L T}+x / 2$. In fact, this is expected value considers both, positive and negative inventory levels and, hence, undererstimates the real expected on-hand inventory level. It is reasonalby accurate for situations with high service levels and/or backorder penalty cost and therefore very rare backorders.
ii. The mathematical programm with $p=0$ reads

$$
\begin{array}{ll}
\min _{x, r} & c \cdot \mu+h \cdot\left(r-\mu_{L T}+\frac{x}{2}\right)+K \cdot \frac{\mu}{x} \\
\text { s.t. } & F_{L T}(r) \geq \alpha
\end{array}
$$

We note, that the constraint does only depend on r. Further observe that the objective function and the constraint are both non-decreasing in r. In our case, this means that smaller values for r will lead to lower cost and a lower α-SL. It is therefore optimal to first determine the smallest $r=r^{\star}$ that datisfies the constraint and next minimize the optjective function for a given r^{\star}, i.e.

$$
\begin{aligned}
& \min _{x} \quad c \cdot \mu+h \cdot\left(r^{\star}-\mu_{L T}+\frac{x}{2}\right)+K \cdot \frac{\mu}{x} \\
= & c \cdot \mu+h \cdot\left(r^{\star}-\mu_{L T}\right)+\min _{x}\left(K \cdot \frac{\mu}{x}+\frac{x}{2} \cdot h\right)
\end{aligned}
$$

We see, that the part of the function, that depends on x is equal to the objective function of the EOQ model! The optimal solution for x^{\star} is therefore given by the EOQ formula.
iii. The mathematical programm with $p=0$ reads

$$
\begin{array}{ll}
\min _{x, r} & c \cdot \mu+h \cdot\left(r-\mu_{L T}+\frac{x}{2}\right)+K \cdot \frac{\mu}{x} \\
\text { s.t. } & 1-\frac{\sigma_{L T}}{x} \cdot L\left(\frac{r-\mu_{L T}}{\sigma_{L T}}\right) \geq \beta
\end{array}
$$

Obviously this program is much more complicated than the program with an α-service-level constraint. Most strikingly, the constraint involves both variables. Additionally, the loss function is decreasing in r.

