Primer on Inventory Management

Solutions

Continuous Review Maodel

Solution to Exercise 1:

i. Annual demand is 200 units.
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Iteration 2:
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Since (142.56 — 142.5) /142.5 = 0.042% < 0.1% we stop with 2* = 111 and r* = 143. Note,

that we round, since we can only consider integral numbers of jars.

ii. In general, the expected cost are computed as
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For z* = 111 and r* = 143 we obtain
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iii. We have already computed the EOQ and its corresponding re-order point in Iteration O.
The expected cost for 2 = 100 and 70 = 144 is
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The cost of this solution is already very close to the cost of the optimal solution.

Solution to Exercise 2:

i. The cost function assumes, that the average inventory level on-hand is equal to r—purr+x /2.
In fact, this is expected value considers both, positive and negative inventory levels and,
hence, undererstimates the real expected on-hand inventory level. It is reasonalby accurate
for situations with high service levels and/or backorder penalty cost and therefore very rare

backorders.



ii.

iii.

The mathematical programm with p = 0 reads
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We note, that the constraint does only depend on r. Further observe that the objective
function and the constraint are both non-decreasing in r. In our case, this means that
smaller values for r will lead to lower cost and a lower a-SL. It is therefore optimal to first
determine the smallest r = r* that datisfies the constraint and next minimize the optjective

function for a given r*, i.e.
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We see, that the part of the function, that depends on z is equal to the objective function
of the EOQ model! The optimal solution for z* is therefore given by the EOQ formula.

The mathematical programm with p = 0 reads
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Obviously this program is much more complicated than the program with an a-service-level
constraint. Most strikingly, the constraint involves both variables. Additionally, the loss

function is decreasing in r.



