# Primer on Inventory Management 

## Solutions

## Newsvendor Model

## Solution to Exercise 1:

## Solution:

i. Expected overage quantity:

$$
\begin{aligned}
E[S-y]^{+} & =\sum_{y=0}^{S}(S-y) \cdot p_{y} \\
& =4 \cdot 0.05+3 \cdot 0.1+2 \cdot 0.2+1 \cdot 0.3+0 \cdot 0.2 \\
& =1.2
\end{aligned}
$$

ii. Expected underage quantity;

$$
\begin{aligned}
E[y-S]^{+} & =\sum_{y=S}^{\infty}(y-S) \cdot p_{y} \\
& =0 \cdot 0.2+1 \cdot 0.1+2 \cdot 0.05 \\
& =0.2
\end{aligned}
$$

In some cases, the infinite sum is cumbersome to compute. An alternative way is:

$$
\begin{aligned}
E[y-S]^{+} & =\sum_{y=S}^{\infty}(y-S) \cdot p_{y} \\
& =\sum_{y=0}^{\infty}(y-S) \cdot p_{y}-\sum_{y=0}^{S}(y-S) \cdot p_{y} \\
& =\sum_{y=0}^{\infty} y \cdot p_{y}-\sum_{y=0}^{\infty} S \cdot p_{y}-\sum_{y=0}^{S}(y-S) \cdot p_{y} \\
& =E(y)-S \cdot \sum_{y=0}^{\infty} p_{y}-\sum_{y=0}^{S}(y-S) \cdot p_{y} \\
& =E(y)-S \cdot 1+\sum_{y=0}^{S}(S-y) \cdot p_{y} \\
& =\mu-S+E[S-y]^{+} \\
& =3-4+1.2 \\
& =0.2
\end{aligned}
$$

iii. Overage cost: $c_{o}=c-v=1.00 \mathrm{EUR}-0.50 \mathrm{EUR}=0.50 \mathrm{EUR}$

Underage cost: $c_{u}=r-c=3.00 \mathrm{EUR}-1.00 \mathrm{EUR}=2.00 \mathrm{EUR}$
iv.

$$
\begin{aligned}
Z(S) & =c_{o} \cdot E[S-y]^{+}+c_{u} \cdot E[y-S]^{+} \\
& =0.50 \cdot 1.2+2.00 \cdot 0.2 \\
& =1.00
\end{aligned}
$$

v. The Critical Ratio reads

$$
\mathrm{CR}=\frac{c_{u}}{c_{u}+c_{o}}=\frac{2}{2+0.5}=0.8
$$



Observe that $S^{\star}=4$. The expected cost are the same as computed in iii.

## Solution to Exercise 2:

i. $c_{u}=25,000-12,000=13,000$ and $c_{o}=12,000-8,000=4,000$. Therefore,

$$
\mathrm{CR}=\frac{c_{u}}{c_{u}+c_{o}}=\frac{13,000}{13,000+4,000}=\frac{13}{17} \approx 0.76
$$

The distribution function of a poisson distribution with rate $\mu$ is

$$
p_{y}=\frac{\mu^{y}}{y!} \cdot e^{-\mu}
$$

For a poisson distribution with rate $\mu=3$ we have

| $y$ | $p_{y}$ | $P_{y}$ |
| ---: | ---: | ---: |
| 0 | 0.050 | 0.050 |
| 1 | 0.149 | 0.199 |
| 2 | 0.224 | 0.423 |
| 3 | 0.224 | 0.647 |
| 4 | 0.168 | 0.815 |
| 5 | 0.101 | 0.916 |
| 6 | 0.050 | 0.966 |
| 7 | 0.022 | 0.988 |
| 8 | 0.008 | 0.996 |
| 9 | 0.003 | 0.999 |
| 10 | 0.001 | 1.000 |

The optimal order quantity is given by the smallest $y$ for wich the cumulative distribution function of the demand is greater or equal to the critical ratio. In our case, this yields $S^{\star}=4$.
ii. Expected overage quantity:

$$
\begin{aligned}
E[S-y]^{+} & =\sum_{y=0}^{S}(S-y) \cdot p_{y} \\
& =4 \cdot 0.050+3 \cdot 0.149+2 \cdot 0.224+1 \cdot 0.224 \\
& =1.319
\end{aligned}
$$

The expected number of spare parts left over after three years is 1.319.
iii. Expected underage quantity:

$$
\begin{aligned}
E[y-S]^{+} & =\sum_{y=S}^{\infty}(y-S) \cdot p_{y} \\
& =\mu-S-\sum_{y=0}^{S}(y-S) \cdot p_{y} \\
& =\mu-S+E[S-y]^{+} \\
& =3-4+1.319 \\
& =0.319
\end{aligned}
$$

The expected number of spare parts to be custom made in three years is 0.319.
iv. Expected cost:

$$
\begin{aligned}
Z(S) & =c_{o} \cdot E[S-y]^{+}+c_{u} \cdot E[y-S]^{+} \\
& =4,000 \cdot 1.319+13,000 \cdot 0.319 \\
& =9,423
\end{aligned}
$$

Expected total cost is therefore

$$
\begin{aligned}
\Pi(S) & =c \cdot \mu+Z(S) \\
& =12,000 \cdot 3-9,423 \\
& =45,423 .
\end{aligned}
$$

## Solution to Exercise 3:

i. We first determine underage and overage cost. Note, that the imputed entrepreneural salary of $10,000 \mathrm{EUR}$ and the rent of $2,000 \mathrm{EUR}$ are not relevant for the seller's decision. Only purchasing and transportation cost are relevant. Hence, $c_{o}=c-v=10+2-1=11$. In case of a shortage, the seller will always buy a tree for 62 EUR from his competitor. However, for the detemrination of underage cost, we only have to account for the additional cost he occurs, i.e. $c_{u}=62-12=50$. Subsequently, we obtain a critical ratio of

$$
\frac{c_{u}}{c_{u}+c_{o}}=\frac{50}{50+11} \approx 0.8197
$$

With

$$
z=F^{-1}(C R)=F^{-1}(0.8197) \approx 0.914
$$

we obtain

$$
S^{\star}=\mu+z \cdot \sigma=10,510+0.914 \cdot 2,114=12,442 .
$$

ii. Under Normally distributed demand the expected cost can be computed as

$$
\begin{aligned}
Z\left(S^{\star}\right) & =\left(c_{u}+c_{o}\right) \cdot f_{N(0,1)}(z) \cdot \sigma \\
& =(50+11) \cdot 0.263 \cdot 2,114 \\
& =33,914 .
\end{aligned}
$$

iii. The expected profit can be computed as

$$
\begin{aligned}
\Pi\left(S^{\star}\right) & =(r-c) \cdot \mu-Z\left(S^{\star}\right) \\
& =(30-12) \cdot 10,510-33,914 \\
& =155,266 .
\end{aligned}
$$

