# Primer on Inventory Management 

## Solutions

## Economic Order Quantity Model

## Solution to Exercise 1:

i.

$$
\begin{aligned}
\frac{\partial}{\partial x} Z(x) & =\frac{h}{2}-K \frac{\mu}{x^{2}} \\
\frac{\partial^{2}}{\partial x^{2}} Z(x) & =\frac{2 K \mu}{x^{3}} \quad>0 \quad \forall x>0
\end{aligned}
$$

ii.

$$
\begin{array}{lr} 
& \frac{\partial}{\partial x} Z(x) \\
\Leftrightarrow & =0 \\
\frac{h}{2}-\frac{K \mu}{x^{2}} & =0 \\
\Leftrightarrow & x^{2} \\
\Leftrightarrow & x^{\star}
\end{array}
$$

Since $x$ cannot be negative, only the positive solution makes sense.
iii. We know that

$$
\begin{equation*}
Z(x)=h \frac{x}{2}+K \frac{\mu}{x}+c \mu \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\star}=\sqrt{\frac{2 K \mu}{h}} \tag{2}
\end{equation*}
$$

Instertion of (2) in (1) yields

$$
\begin{equation*}
Z\left(x^{\star}\right)=c \cdot \mu+\sqrt{2 K \mu h} \tag{3}
\end{equation*}
$$

iv. In our cost function the inventory holding cost is

$$
\begin{equation*}
h \frac{x}{2} \tag{4}
\end{equation*}
$$

and the fixed order cost is

$$
\begin{equation*}
K \frac{\mu}{x} \tag{5}
\end{equation*}
$$

The optimal order quantity is

$$
\begin{equation*}
x^{\star}=\sqrt{\frac{2 K \mu}{h}} \tag{6}
\end{equation*}
$$

Instertion of (6) in (4) and (5) yields

$$
\begin{equation*}
h \frac{x^{\star}}{2}=\frac{h}{2} \cdot \sqrt{\frac{2 K \mu}{h}}=\sqrt{\frac{K \mu h}{2}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
K \frac{\mu}{x^{\star}}=\frac{K \mu}{\sqrt{\frac{2 K \mu}{h}}}=K \mu \cdot \sqrt{\frac{2 K \mu}{h}}=\sqrt{\frac{K \mu h}{2}} \tag{8}
\end{equation*}
$$

Obviously, (7) and (8) are equal.

## Solution to Exercise 2:

First, determine the annual demand rate:

$$
\mu=60 \text { units/week } \cdot 52 \text { weeks/year }=3,120 \text { units/year }
$$

The annual holding cost rate is:

$$
h=0.25 \text { year }^{-1} \cdot 0.02 \mathrm{EUR} / \text { unit }=0.005 \mathrm{EUR} / \text { (unit } \cdot \text { year }
$$

This yields:

$$
x^{\star}=\sqrt{\frac{2 K \mu}{h}}=\sqrt{\frac{2 \cdot 12 \cdot 3,120}{0.005}}=3,870 \text { units. }
$$

The cost of the optimal solution is:

$$
\begin{aligned}
Z\left(x^{\star}\right) & =c \cdot \mu+\sqrt{2 K \mu h} \\
& =0.02 \cdot 3,120+\sqrt{2 \cdot 12 \cdot 3,120 \cdot 0.005} \\
& =81.75 \mathrm{EUR}
\end{aligned}
$$

## Solution to Exercise 3:

i.

$$
x^{\star}=\sqrt{\frac{2 K \mu}{h}}=\sqrt{\frac{2 \cdot 40 \cdot 10.6}{0.1}}=92.09 \approx 92
$$

ii.

$$
\begin{aligned}
Z\left(x^{\star}\right) & =c \cdot \mu+\sqrt{2 K \mu h} \\
& =1 \cdot 10.6+\sqrt{2 \cdot 40 \cdot 10.6 \cdot 0.1} \\
& =19.81 \mathrm{EUR}
\end{aligned}
$$

iii. For $x^{\prime}=0.9 \cdot x^{\star}=0.9 \cdot 92=82.8 \approx 83$ we compute

$$
\begin{aligned}
Z(83) & =c \cdot \mu+h \frac{83}{2}+K \frac{\mu}{83} \\
& =1 \cdot 10.6+0.1 \frac{83}{2}+40 \frac{10.6}{83} \\
& =19.86
\end{aligned}
$$

Observe, that the difference to $Z\left(x^{\star}\right)$ is very small!
iv. We know that

$$
\mathcal{Z}(x)=h \frac{x}{2}+K \frac{\mu}{x}
$$

and

$$
\mathcal{Z}\left(x^{\star}\right)=\sqrt{2 K \mu h}
$$

Subsequently,

$$
\begin{aligned}
\frac{\mathcal{Z}(x)}{\mathcal{Z}\left(x^{\star}\right)} & =\frac{h \frac{x}{2}+K^{\frac{\mu}{x}}}{\sqrt{2 K \mu h}} \\
& =\frac{x}{2} \cdot \frac{h}{\sqrt{2 K \mu h}}+\frac{1}{x} \cdot \frac{K \mu}{\sqrt{2 K \mu h}} \\
& =\frac{x}{2} \cdot \frac{1}{x^{\star}}+\frac{1}{2 x} \cdot \frac{x^{\star}}{1} \\
& =\frac{1}{2}\left(\frac{x}{x^{\star}}+\frac{x^{\star}}{x}\right)
\end{aligned}
$$

v. The sensitivity plot reads:

vi. The solution is remarkably insensitive.

